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Abstract. The global integro-differential rate equations describing a multimode laser are analyzed. Expres-
sions for the relaxation oscillation frequencies and their damping rates in the single-mode and two-mode
regimes are obtained without specifying either the cavity geometry or the longitudinal pump profile. On
the same level of generality, we prove the existence of universal relations relating the peaks of the power
spectra in the two-mode regime. For a Fabry-Perot with arbitrary longitudinal pump profile, series expan-
sions of all the physical functions are derived in powers of the pump moments. These moments are averages
of the pump profile over cavity modes at linear combinations of the lasing frequencies and their harmonics.
These results apply to end-pumped and/or partially filled lasers. For a single mode Fabry-Perot laser, we
prove that the contribution to the steady state intensity from the lasing mode varies from 75% close to the
lasing threshold to zero at high intensity. The remainder comes from the harmonics of the lasing mode.
Analyzing the steady state single mode intensity equation in terms of the pump gratings, we prove that
close to the lasing threshold only the space average of the pump and its grating oscillating at twice the
lasing wave number do not vanish. This provides a hint towards the justification of the usual modal rate
equations which retain only these two functions in the dynamical evolution of a laser. For a Fabry-Perot
with constant pump profile, an exact expression for the upper boundary of the stable single mode regime
is derived. In that two-mode regime, we prove that there is a critical value of the pump at which the ratio
of the two relaxation oscillation frequencies is 2, leading to an internal resonance.

PACS. 42.55.Ah General laser theory – 42.65.Sf Dynamics of nonlinear optical systems;
optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics

1 Introduction

The purpose of this paper is to present a study of the
global rate equations describing a homogeneously broad-
ened multimode laser. In reduced variables, these equa-
tions are [1]

d
dτ
I(p, τ) = κpI(p, τ)

{
−1 +

γp
L

∫ L

0

fp(z)J (z, τ)dz

}
,

(1)

∂

∂τ
J (z, τ) = w(z)−J (z, τ)

{
1 +

∑
p

fp(z)I(p, τ)

}
,

(2)

where fp(z) ≡ |φp(z)|2 and φp(z) is a lasing cavity eigen-
mode, Ip(τ) is the intensity of mode p normalized to its
saturation intensity, time and time constants have been
scaled to the population inversion decay time, κp and γp
are, respectively, the decay rate and the linear gain of
mode p, J (z, τ) is the population inversion and w(z) is
the longitudinal pump profile. There are N modes labelled
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by the index p = 1, 2, . . . , N. The cavity length is L. In
this formulation, transverse effects are neglected.

Up to now, most studies of equations (1, 2) have been
based on modal expansions of the population inversion.
This leads to an infinite hierarchy of equations which is
truncated without much justification to yield a finite set
of purely differential equations. The most popular trunca-
tion scheme, leading to the simplest rate equations, was
proposed by Tang, Statz, and deMars [2]. The TSD rate
equations couple the modal intensities to the population
inversion averaged over the cavity length and to the pop-
ulation gratings at the optical frequencies. The popula-
tion gratings are related simply to the averages of J (z, τ)
over the cavity modes. The TSD rate equations form the
minimal set of modal equations that can be derived from
the global equations with φp(z) =

√
2 sin(kpz) and which

include the effect of population grating. These rate equa-
tions rely on a set of assumptions, some of which were
sensible in the early sixties but are no longer necessar-
ily applicable to most lasers: the amplifying medium fills
the resonant cavity, the longitudinal pump profile (i.e.,
the pump profile along the optical axis of the cavity)
is constant, and the resonator is a linear Fabry-Perot
resonator. By linear, we mean a Fabry-Perot cavity whose
optical axis is a straight line, as opposed to standing wave
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configurations where the cavity has two (or more) arms
connected by a mirror or a grating. Such cavities have
different polarization properties which affect the perfor-
mance of the laser if a birefringent element is introduced.

Among the recent developments in laser physics is
the emergence of new laser cavities. They include high-
Q small-volume optical resonators such as Nd:YAG
spheres [3], Nd:glass micro-spheres [4], micro-cylinder
semiconductor lasers with bow-tie whispering gallery
modes in asymmetric resonators [5], and recently 8 µm
hexagonal cavities operating on whispering gallery modes
in zeolite-dye microlaser [6]. These laser cavities are often
not reducible to a linear Fabry-Perot [7,8], which indi-
cates the need for a laser theory that does not rely ex-
plicitly on the cavity mode properties. In this context, a
problem which will not be discussed here is whether a de-
terministic rate equation description is valid or not. In a
recent paper [9], it has been argued that for a threshold-
less microlaser, deterministic rate equations are no longer
the adequate framework because spontaneous noise dom-
inates the laser dynamics at low pump rates. This cer-
tainly places a physical constraint on the validity of the
rate equations, of either the modal or the global varieties.
Still, the results of [9] should be taken with some care since
they also rely heavily on a truncation procedure similar to
the TSD scheme.

Many solid-state lasers today are end-pumped by an-
other laser, often a diode laser. Therefore, the longitudi-
nal profile of the pump inside the resonator is not con-
stant but obeys Beer-Lambert’s law w(z) ∼ exp(−z/α) at
low power. The absorption length α is strongly frequency-
dependent and the pump normally operates at a frequency
quite different from the lasing frequency. Thus α is not re-
lated in any simple way to the lasing characteristics of the
pumped medium. In addition, even if the pumping is or-
thogonal to the laser axis, it may vary along the cavity
length. Early attempts to generalize the TSD equations
to include the longitudinal pump variations have been re-
stricted by some other assumptions, such as a pump profile
which can be described in terms of only a space average
and one long wavelength spatial Fourier component, and
also the replacement of the saturation by a cubic non-
linearity [10–12]. Recently, a systematic analysis of the
moment expansion of the global rate equations led to an
extension of the TSD equations [13]. It retains the long
wavelength moments of the pump and of the population
inversion. However, it is a recent experimental work on
Nd:YAG lasers [14] that has shown most clearly the impor-
tance of the longitudinal pump profile. These authors have
shown that the ordering of the modes according to their
intensity does not match the ordering of the modal linear
gains: the modal intensities cross each other many times
as the pump increases, a property which is incompatible
with the TSD equations. They also give hints that the
exponential decay of the pump along the cavity axis ex-
plains qualitatively the experimental results. This problem
was also discussed in a recent analysis of the LiNdP4O16

microchip laser dynamical properties [15]. However, in
that paper exponential decay of the pump and multilevel

configuration were analyzed simultaneously so that it is
not possible to determine the consequences of each effect
separately.

Another fundamental issue which is not accounted for
by the TSD equations is the role of the filling factor. The
question here is to describe a laser whose cavity is only
partially filled by the amplifying medium. This problem
was tackled in [16] in a TSD-like formulation. Recently, the
filling factor problem has been investigated more system-
atically for a Nd:YAG laser in the multimode regime [17].
In that paper, experimental results are reported and com-
pared with a numerical simulation of the global equations.
The main conclusion is that the number of modes and
their dynamical properties such as the relaxation oscilla-
tion frequencies critically depend on the filling factor. For
instance, variations of the filling factor may lead to the
suppression of modes with linear gains larger than those
of the oscillating modes. Here again, the ordering of the
modes according to their intensity does not match the or-
dering of the modal linear gains.

There are at least three more reasons for which a study
of the global rate equations is necessary. One reason is that
the extension of the TSD equations [13,18] predicts a self-
pulsing threshold in the multimode regime if the pump
is sufficiently inhomogeneous spatially. Analytic selfpuls-
ing conditions have been derived for two- and three-mode
lasers. This is in complete contradiction with the TSD
equations for which the only possible instability is the ap-
pearance of a new lasing mode. Another reason is the un-
realistic property that the number of relaxation oscillation
frequencies and damping rates increases without limit as
the number of moments which is retained in the hierarchy
of evolution equations increases. Finally, in a recent pa-
per [19], we have proved that a general antiphase theorem
can be derived from equations (1, 2). In this context, it
appeared clearly that assessing the role of the filling fac-
tor is not a problem if the theory is developed without
any specification of the longitudinal pump profile and the
results are expressed in terms of averages of the pump.

In this paper, we present results derived from the N -
mode global rate equations (1, 2). However, explicit prop-
erties have been obtained only for single and two-mode
lasers. In addition, an attempt is made to derive as many
results as possible that are independent of the cavity mode
and the longitudinal pump profile. This paper is organized
as follows. In Section 2, we analyze the steady state modal
intensities. This section is subdivided in three parts: in
Section 2.1, we study in detail the properties of the single
mode intensity. In Section 2.2 we discuss a few properties
of the two-mode steady state intensities. In Section 2.3
we derive an exact equation for the boundary separat-
ing the single mode regime from the two-mode regime. In
this section, most expressions hold for an arbitrary pump
profile but all results are obtained for a linear Fabry-
Perot. In Section 3, we analyze the evolution equations
linearized around the steady state to determine the laser
stability. This section is also subdivided in three parts: in
Section 3.1, we obtain the relaxation oscillation frequen-
cies and their damping rates for a single mode laser with
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arbitrary cavity mode and pump profile. In Section 3.2,
the relaxation oscillations are studied and explicit results
derived for two modes. The condition for internal reso-
nance and universal power spectral relations are derived
in this section. In Section 3.3, the damping rates of the
relaxation oscillations are studied and explicit expressions
are derived for two modes. Finally, the results of this paper
are summarized in the conclusion.

2 Steady state solutions

The steady state solutions of the global rate equa-
tions (1, 2) are given by the implicit equations

1 =
γp
L

∫ L

0

fp(z)J (z)dz, (3)

w(z) = J (z)

{
1 +

∑
p

fp(z)Ip

}
. (4)

An overbar indicates that the function is evaluated in
steady state. Little can be said without any additional
information. Therefore, we particularize the analysis of
this section to a linear Fabry-Perot for which fp(z) =
2 sin2(kpz). We adopt the notation convention fn,p =
2 sin2(nkpz).

2.1 Single mode

The implicit single mode intensity equation is

1 =
1
L

∫ L

0

fp(z)w(z)
1 + Ipfp(z)

dz. (5)

If the pump profile is constant, the exact solution of
equation (5) is

Ip =
1
4
(
4w − 1−

√
8w+ 1

)
. (6)

To solve equation (5) if w is not constant, a first approach
is to expand the denominator in powers of Ipfp and to
use the recurrence relation

fnp =
1

2n−1

n−1∑
k=0

(−1)n+1−k
(

2n
k

)
fn−k,p (7)

to generate the series expansion

1 =
∞∑
n=0

(Ip/2)n
n∑
k=0

(−1)k
(

2n+ 2
k

)
wn−k+1,p (8)

= wp +
1
2
Ip (w2,p − 4wp)

+
1
4
I2

p (w3,p − 6w2,p + 15wp) + · · · , (9)

with the definition of the modal pump averages

wn,p ≡
1
L

∫ L

0

wfn,pdz

=

∫ L
0 φ∗(nkpz)w(z)φ(nkpz)dz∫ L

0
|φ(nkpz)|2 dz

· (10)

Since the index 1 is physically irrelevant, we write wp in-
stead of w1,p. It is clear that wn,p is the average of the
pump profile w(z) over the nth harmonic of the single
lasing cavity mode. A series reversion yields the solution

Ip = 2
wp − 1

4wp − w2,p
Kp, (11)

Kp = 1 + (15wp − 6w2,p + w3,p) yp +O(y2
p),

where Kp is a series in powers of

yp = (wp − 1) / (w2,p − 4wp)
2
.

It is a simple matter to keep as many terms as needed
in equation (9) and to reverse the series to obtain the
intensity to any desired accuracy.

Another way to analyze the implicit equation (5) for
the steady state intensity is to sum in closed form the
coefficients of the modal pump coefficients in the series (8)

1 = 4
∞∑
k=0

(
2Ip
)k
wk+1,p√

1 + 2Ip
(

1 +
√

1 + 2Ip
)2k+2

· (12)

We use this result to study in more details some aspects
of the nonlinear resonator dynamics.

One way to use equation (12) is to evaluate the con-
tribution of wp alone to the intensity by setting wk+1,p =
wpδk,0 in equation (12). Let Dp be that contribution. It is
given by

4wp =
√

1 + 2Dp
(

1 +
√

1 + 2Dp
)2

.

Close to threshold, wp → 1 and Dp → (wp − 1) /2.
From equation (11) we find that in the same limit Ip →
2 (wp − 1) / (4wp − w2,p) = 2 (wp − 1) / (4− w2,p). Com-
bining these results leads to

lim
wp→1

Dp/Ip = 1− w2,p/4.

For a constant pump, wn,p = w and limwp→1Dp/Ip =
3/4. In the large intensity limit, 2Dp → (4wp)

2/3 and
Ip → wp leading to

lim
wp→∞

Dp/Ip = (2/wp)
1/3

.

This shows that the contribution of the cavity mode
φ(kpz) to the steady state intensity decreases from 1 −
w2,p/4 to zero as the intensity varies from zero to infinity.
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It is therefore a poor approximation to neglect in a Fabry-
Perot the harmonics of the single lasing mode generated
by the nonlinear light-matter coupling, and the approxi-
mation gets worse as the intensity increases.

Another way to analyze the expansion (12) is to define
the pump gratings

Wn,p =
1
L

∫ L

0

w(z) cos (2nkpz) dz.

Note that W0,p ≡W0. Equation (12) becomes

1 = ApW0 − 4
∞∑
k=0

Bk,pWk+1,p (13)

Ap =
2√

1 + 2Ip
(

1 +
√

1 + 2Ip
) ,

Bk,p =

(
2Ip
)k√

1 + 2Ip
(

1 +
√

1 + 2Ip
)2k+2

·

In this expansion, the fundamental mode and all the har-
monics contribute to Ap while only departures from the
constant pump contribute to the infinite sum via the pump
grating coefficientsWk,p. In the low intensity limit Ip → 0,
the coefficients Ap and Bk,p are

Ap → 1, Bk,p →
1
4
(
Ip/2

)k
.

Thus at threshold the only nonvanishing pump grating
weights are Ap = 1 and B0,p = 1/4, and equation (13)
reduces to the condition wp = 1. The weight of all other
pump gratings vanishes in this limit. This result is a justi-
fication, in steady state and close to the laser first thresh-
old, of the TSD approximation scheme [2], though W1,p

is neglected in the standard formulation of the TSD rate
equations. The high intensity limit of the pump grating
weights is

Ap → 1/Ip, Bk,p → 1/
(
2Ip
)3/2

.

Therefore, all coefficients Bk,p vanish in that limit, being
significantly nonzero only in the intermediate domain, in
particular in the low but finite intensity domain. Note that
in the large intensity limit, all pump gratings vanish with
the same k-independent law. For k > 0, the functions Bk,p
have a maximum at

Ik,p =
1
9

[
k2 + 2k − 2 + (k + 1)

(
k2 + 2k + 4

)1/2]
.

The first maxima are at

I1,p =
1
9

(
1 + 2

√
7
)
' 0.699,

I2,p =
2
3

(
1 +
√

3
)
' 1.821,

and I3,p =
1
9

(
13 + 4

√
19
)
' 3.382.

Figure 1 displays the weights Ap and Bk,p versus the in-
tensity.

Ap
B0,p

0

1

0 2 6 8 104
Ip

B2,p

B1,p
B3,p

0 2 4 8 106
Ip

0.000

0.025

Fig. 1. Dependence of five lowest pump grating weights on
intensity.

2.2 Two modes

The two-mode steady state modal intensities are deter-
mined by the two coupled implicit equations

1 =
γp
L

∫ L

0

w(z)f(kpz)
1 + f(k1z)I1 + f(k2z)I2

dz, (14)

with p = 1, 2. For a linear Fabry-Perot, we have the re-
currence relation (7) and

f(kpz)f(kqz) = f(kpz) + f(kqz)− 1
2
f(kpz + kqz)

− 1
2
f(kpz − kqz). (15)

Using these relations, we obtain from (14) the expansions

wp − γ−1
p = Ip

(
2wp −

1
2
w2,p

)
+ Iq

(
wp + wq −

1
2
wp,+,q −

1
2
wp,−,q

)
+ ...

with the notation wnp,±,mq ≡ w (nkp ±mkq). The solu-
tion of these two coupled equations is of the form Ip =
F(p, q), with p, q = 1, 2 and p 6= q. The function F(p, q) is
too complicated to be useful for analytic work. However,
if wp = w, it reduces to

F(p, q) =
2
5

(3yp − 2yq) +
4
53

(
41y2

p − 18ypyq − 9y2
q

)
+

2
55

(
881y3

p + 3318y2
pyq − 4582ypy2

q + 1106y3
q

)
+O(y4),

(16)

with yn = 1 − 1/ (wγn) and using the fairly obvious no-
tation O(y4) ≡ O(yapy

b
qδa+b,4). In the double limit γp =

γq = γ and wp = w, the modal intensities become

I1 = I2 =
2
5
y +

56
53
y2 +

1446
55

y3 +O(y4). (17)
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The corresponding expressions for the TSD solutions and
a discussion of the convergence of their series expansions
are given in Appendix B.

2.3 The two-mode threshold

The threshold for two-mode oscillation derives from the
simultaneous solution of the pair of equations (14) with
I2 = 0. A subscript “th” should be added to all functions
and parameters in this section to clearly indicate that all
the calculations are performed at the threshold. This will
not be done for the sake of clarity. It is not difficult to
prove with the help of the recurrence relations (7, 15) that
the two threshold intensity equations are

1 =
γ2

L

∫ L

0

f2(z)w(z)
1 + I1f1(z)

dz

= γ2w2 − 2
∞∑
n=1

(
2I1

)n
(γ2/L)

∫ L
0
w(z)f(nk1z)f(k2z)dz√

1 + 2I1

(
1 +

√
1 + 2I1

)2n+2 ,

(18)

1 =
γ1

L

∫ L

0

f1(z)w(z)
1 + I1f1(z)

dz

= 4
∞∑
n=0

(
2I1

)n
(γ1/L)

∫ L
0 w(z)f (nk1z + k1z) dz√

1 + 2I1

(
1 +

√
1 + 2I1

)2n+2 · (19)

In the simple case of constant pump w1 = w2 = w and
with the definitions γ1 = 1, γ2 ≡ γ introduced without
loss of generality, equation (18) becomes√

1 + 2I1

(
1 +

√
1 + 2I1

)3

= 2I1γw/ (γw− 1) , (20)

while equation (19) leads to the solution (6). The simul-
taneous solution of these equations is

I1 = 4γ(γw− 1) (γ + 2− 2γw)−2
, (21)

together with the consistency condition(
4w− 1−

√
8w + 1

)
(γ + 2− 2γw)2 = 16γ(γw− 1).

(22)

Equations (22, 21) are the required results: they give the
upper boundary in the (w, γ) plane for the stable single
mode operation and the intensity of the first mode on that
boundary. In Figure 2, this stability boundary is plotted
in the (w, γ) plane as the curve labelled GLB. If γ is close
to unity, the solution of equation (22) can be written as

w = 1 +
6
5

(1− γ) +
26
25

(1− γ)2

+
654
125

(1− γ)3 +O
[
(1− γ)4

]
.

TSD

0.4 0.5 0.6 0.7 0.8 0.9

γ

1.0
1

2

3

4

5

6

w

GLB

Fig. 2. Threshold for two-mode
operation (i.e., upper bound
for stable single mode oscilla-
tion) in the (w, γ) plane. At
the threshold, the intensity of
the first mode is finite and the
intensity of the second mode
vanishes.

The corresponding upper boundary in the TSD approxi-
mation, derived in Appendix B, is

wTSD =
(
−1 + 4γ − 2γ2

)
[γ(2γ − 1)]−1

= 1− 3 (1− γ) + 5 (1− γ)2

− 9 (1− γ)3 +O
[
(1− γ)4

]
.

It is also plotted in Figure 2. There is a big difference be-
tween the two results: the TSD expression for the critical
pump diverges at γ = 1/2 below which the critical pump
becomes negative and the intensity is no longer real and
positive. This singularity is an artefact of the truncated
equations which is not found in the global equations for
which a threshold exists for any positive γ. In the domain
0.5 < γ ≤ 1, the TSD approximation of the threshold is
systematically larger than the GLB result which diverges
only at the origin: w increases monotonically from 1 to ∞
as γ decreases from 1 to 0.

A characterization of the two-mode threshold is impor-
tant since it determines the domain in which a laser oper-
ates stably on a single mode. The problem of determining
the limits imposed by the population inversion grating
(i.e., spatial hole burning) on the single-mode operation
was analyzed in [20]. However, the result obtained in that
paper relies on an inconsistent use of the assumption of
slow spatial variation of the pump compared with cavity
mode variations. This leads to equation (6) for the single
mode intensity equation with w replaced by the space av-
erage of w(z), but fails to reproduce equation (20) for the
modal intensity at the lower boundary of the two-mode
regime. The case of end-pumping was considered in [21]
though with the same shortcoming as in [20].

3 The linearized dynamical equations

Linearizing equations (1, 2) with respect to deviations
{xp} from the steady state leads to a set of N linear ho-
mogeneous equations

λ2xp = −κpγpIp
L

∫ L

0

wfp
∑
q fqxq

1 +
∑
q fqIq

dz

+
κpγpIp
L

∫ L

0

wfp
∑
q fqxq

λ+ 1 +
∑
q fqIq

dz (23)

where λ is the characteristic root.
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3.1 Single mode regime

In the single mode regime, γp = 1 and the characteristic
equation is

λ2 = −κp (wp − 1) +
κpIp
L

∫ L

0

wf2
p

λ+ 1 + fpIp
dz. (24)

To solve this integral equation, we use the fact that κp is
a large number, being typically in the range 104 to 106. In
the range of pump parameters such that wp − 1 = O(1),
the characteristic equation has solutions in the form of a
series in powers of κ1/2

p . It is easy to solve equation (24)
by iteration to obtain

λ± = ±i
√
κp (wp − 1)− Ip

2
wpp

wp − 1
+O(κ−1/2

p ),

where the symbol wp...p with n indices is defined as
wp...p = (1/L)

∫ L
0 w(z)fnp dz. Let us emphasize that the ex-

pression for λ± is independent of both longitudinal pump
profile and explicit cavity mode properties.

The characteristic roots λ± have been obtained with
the assumption that wp − 1 is finite. Close to the lasing
first threshold, a different analysis is required. We define
the vicinity of the threshold by wp − 1 = α/κp where
α = O(κ0

p). In that range, the characteristic equation has
two real solutions

λ1 = −κp(wp − 1) +O(κ−1
p ),

λ2 = −Ipwppp/wpp +O(κ−2
p ). (25)

Here again, the result holds for any pump profile w(z)
and any cavity modes fp. Thus, close to threshold the
steady state does not display relaxation oscillations: per-
turbations from the steady state are simply damped.
Though the two real roots (25) vanish at threshold, they
have different orders of magnitude: λ1 = O(κ0

p) while
λ2 = O(κ−1

p ).
Using the property wpp = 2wp − (1/2)w2,p for a lin-

ear Fabry-Perot, we get for the complex characteristic
roots Re(λ±) = (1/2)Kp where Kp is defined by equa-
tion (11). Hence Kp is the width of the peak at the fre-
quency |Im(λ±)| in the power spectrum of the laser out-
put. This power spectrum is generated, for instance, by
the noise in the laser. For a linear Fabry-Perot, the root
λ2 can be expressed in terms of the modal pump aver-
ages as

λ2 = − (wp − 1)
(

15
4
wp −

3
2
w2,p +

1
4
w3,p

)

×
(

2wp −
1
2
w2,p

)−2

+O(κ−2
p ).
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Fig. 3. Decay rate of the single mode relaxation oscillations.

If the pump is constant, the decay rates and the relaxation
oscillation frequency are

λ± = ±i
√
κp(w − 1)− 3wIp

4(w − 1)
+O(κ−1/2

p ), (26)

λ1 = −κp(w − 1) +O(κ−1
p ),

λ2 = −10(w− 1)/9 +O(κ−2
p ),

with the steady state intensity given by (6). The TSD
analog of the characteristic roots (26) is

λ±TSD = ±i
√
κp(w − 1)− w/2 +O(κ−1/2

p ).

The relaxation oscillation frequencies coincide if the pump
profile is a constant, which requires of course that the
cavity be filled by the amplifying medium. However, the
decay rate of these relaxation oscillation frequencies are
quite different. They coincide at threshold, but the power
broadening is always underestimated by the TSD theory
as clearly shown in Figure 3 where the result 3wIp/4(w−
1) and the TSD approximation are displayed.

3.2 Relaxation oscillation frequencies

If more than one mode is excited, we study separately
the relaxation oscillations and their damping. This is sug-
gested by the result obtained in the previous section,
where it is clear that oscillations and damping operate
on different time scales.
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Θ2
1 =

1
10

(3yp + 3yq +R) +
2621(y3

p + y3
q)− 2437ypyq (yq + yp) + (127y2

p + 127y2
q − 96ypyq)R

2(53)R
+O(y3),

3.2.1 Arbitrary mode number

In the large κ limit, equation (23) is approximated by

λ2xp ' −
κpγpIp
L

∑
q

xq

∫ L

0

wfpfq

1 +
∑
q fqIq

dz

= −
∑
q

apqxq, (27)

apq =
κpγpIp
L

∫ L

0

J fpfqdz, (28)

provided that all eigenvectors xq have the same scaling in
terms of κ. However, from equation (4), we have

∑
p6=q
Ip

1
L

∫ L

0

J fpfqdz = wq − (1 +Ω2
q )/γq,

where the auxiliary frequency Ωp is defined through

Ω2
p =

γpIp
L

∫ L

0

J f2
pdz = app/κp.

Finally, we get a set of linear inhomogeneous equations for
the coefficients apq

∑
p6=q

γq
γpκq

apq = ∆q ≡ γqwq − 1−Ω2
q . (29)

These relations decrease the number of parameters since
they allow to express the off-diagonal apq in terms of the
diagonal {app} and the {wp}. By definition apq > 0 and
therefore ∆q > 0. This gives an upper bound to the aux-
iliary frequencies since ∆q > 0 implies Ω2

q < γqwq − 1.

3.2.2 Two modes

The linear relations equation (29) yield apq = γpκp∆q/γq
and the characteristic equation derived from equation (27)
becomes λ4 + bλ2 + c = 0 with

b = κ1Ω
2
1 + κ2Ω

2
2 , c = κ1κ2

(
Ω2

1Ω
2
2 −∆1∆2

)
.

The auxiliary functions Ωp are explicitly evaluated in
Appendix C. The roots of the characteristic equation

are

λ2
1 =

− 1
2

{
κ1Ω

2
1 + κ2Ω

2
2 +

√
(κ1Ω2

1 − κ2Ω2
2)2 + 4κ1κ2∆1∆2

}
≡ −κ1Θ

2
1, (30)

λ2
2 =

− 1
2

{
κ1Ω

2
1 + κ2Ω

2
2 −

√
(κ1Ω2

1 − κ2Ω2
2)2 + 4κ1κ2∆1∆2

}
≡ −κ2Θ

2
2. (31)

The Θp are the relaxation oscillation frequencies in the
two mode regime. The corresponding eigenvectors have
components

x2

x1
= −λ

2 + a11

a12
= −γ2

(
λ2 + κ1Ω

2
1

)
/ (κ1∆1γ1) .

Let δ = κ1Ω
2
1 −κ2Ω

2
2 . The eigenvectors can be written as(

x11

x21

)
=

1
N1

(
2κ1∆1γ1/γ2

−δ +
√
δ2 + 4κ1κ2∆1∆2

)
for λ = λ1, (32)

(
x12

x22

)
=

1
N2

(
2κ1∆1γ1/γ2

−δ −
√
δ2 + 4κ1κ2∆1∆2

)
for λ = λ2, (33)

where N1 and N2 are normalization constants.
In the limit κp = κq and for a Fabry-Perot with wp =

w, the power expansion of the two frequencies Θ2
p are

see equation above

and Θ2
2(R) = Θ2

1(−R) where

R =
√

129y2
p − 242ypyq + 129y2

q

and yn = 1−1/ (wγn). If, in addition, the linear gains are
equals γp = γq = γ, the Θ2

p become

Θ2
1 = y + y2 + y3 +O(y4),

Θ2
2 =

1
5
y +

33
53
y2 +

853
55

y3 +O(y4).

In the same flat gain/loss limit (κp = κq = κ, γp = γq = γ)
and with constant pump profile (wp = w), we obtain the
following expansions in terms of γw

Θ2
1 = γw − 1, (34)

Θ2
2 =

1
5

(γw− 1) +
23

53
(γw − 1)2 − 172

55
(γw − 1)3 + ...
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and the eigenvectors are(
x11

x21

)
=

1√
2

(
1
1

)
,

(
x12

x22

)
=

1√
2

(
1
−1

)
,

which is an alternative way to express the antiphase the-
orem [19]. In the same limit, the TSD model yields the
frequencies

Θ2
1,TSD = γw − 1,

Θ2
2,TSD =

1
5

(γw− 1) +
23

53
(γw − 1)2 − 72

55
(γw− 1)3 + ...

Again, this expansion is close to the exact result (34) if
γw is close to unity, but it suffers from the defect that
the TSD expansion is the same whatever the longitudinal
profile is.

Note that in the flat gain/loss limit and with con-
stant pump profile (which implies a completely filled
Fabry-Perot cavity), the parameters γp, κp, and wp are
independent of their index. Therefore Ωp is also index-
independent, which implies

δ = 0, Θ2
1 = γw − 1, Θ2

2 = 2Ω2 −Θ2
1. (35)

3.2.3 Internal resonance

We know from studies of the TSD equations in the flat
gain/loss limit that in the two-mode regime there is a
special value of the pumping rate, wr = 15/7 ' 2.143, for
which there is an internal resonance: Θ2

1,TSD = 4Θ2
2,TSD

[22]. The same phenomenon occurs with the global rate
equations. Using the expansion of Θj in powers of y with
flat gain/loss distribution and wp = w, it can be shown
that the internal resonance Θ2

1 = 4Θ2
2 occurs for yr '

0.712 or wr ' 3.472 which deviates from the TSD result
by more than 50%.

3.2.4 Universal power spectral identities

Using the eigenvectors (32, 33), the modal intensities are
given by

Ip(τ) = Ip + ε
∑
q

(
Cqxpqe−iΘqτ + c.c.

)
+ O(ε2),

and the coefficients {Cp} are determined by the initial con-
dition Ip(0). The total intensity is

Itot =
∑
p

Ip

=
∑
p

Ip + ε
∑
p

(
Cpe−iΘpτ

∑
q

xqp + c.c.

)
+O(ε2).

For two modes, this expression reduces to

Itot = I1 + I2 + ε
[
C1 (x11 + x21) e−iΘ1τ + c.c.

]
+ ε

[
C2 (x12 + x22) e−iΘ2τ + c.c.

]
+O(ε2).

Since λ2
p < 0, the eigenvalues are purely imaginary at this

order. The power spectral density of Itot at frequency Θq
is |Cq (x1q + x2q)|2 . The power spectral density of Ip at
the frequency Θq is |Cqxpq |2 . Let P (X , p) be the power
spectral density of the dynamical variable X at the fre-
quency Θp . Using the expressions (32, 33) and the fact
that ∆p > 0, we obtain

P (Itot, 1) =
[√

P (I1, 1) +
√
P (I2, 1)

]2
, (36)

P (Itot, 2) =
[√

P (I1, 2)−
√
P (I2, 2)

]2
. (37)

These relations are universal in the sense that they do
not depend on the coefficients {Cp} which contain all the
information on the initial condition. They are also inde-
pendent of any of the laser operating parameters. The
only limitation is the validity of the linearized dynamical
equations to describe the laser. Let us stress that the rela-
tions (36, 37) have been derived for arbitrary w(z) and fp.
Similar relations were derived for specific models, cavities
and constant pumping rates, and confirmed experimen-
tally in [23].

3.3 Damping rates

3.3.1 Arbitrary mode number

For an arbitrary mode number, a study of the damping
rates has to start with equation (23):

λ2xp +
∑
q

[apq − αpq(λ)] xq = 0, (38)

with apq defined by equation (28) and

αpq(λ) =
κpγpIp
L

∫ L

0

wfpfq

λ+ w/J
dz.

A property that will be used in the following is

lim
λ→∞

αpq(λ) =
dpq
λ

+O(1/λ2),

dpq =
κpγpIp
L

∫ L

0

wfpfqdz.

An approximation scheme to solve equation (38) can be set
up as follows. The coefficients apq−αpq have the property
that apq is proportional to κ while αpq can be expressed as
a series in descending powers of κ1/2 starting with a κ1/2

term. It follows from this structure that the eigenvalues
will be of the form λ = λ1κ

1/2 +λ0 +λ−1κ
−1/2 +O(1/κ).

From the structure of the characteristic equation (23), it
also follows that λ1 is imaginary and the next order in κ
will give a real coefficient λ0 which is the dominant order
contribution to the damping of the relaxation oscillation
frequency. This conclusion holds only if λ1 is O(κ0). A
necessary condition is therefore that the laser is not op-
erating too close to a threshold where a new mode has
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emerged. For instance, for the simplified model with flat
gain/loss distribution and with constant pump, there is a
very thin boundary layer γw − 1 = O(1/κ) where a dif-
ferent asymptotic analysis is required, which yields two
real roots instead of a pair of complex conjugate roots as
was shown in Section 3.1. That boundary layer is excluded
from the following analysis.

3.3.2 Two modes

In the two-mode regime, the linearized equations for the
xp, equation (38), lead to the biquadratic characteristic
equation λ4 + λ2(b11 + b22) + b11b22 − b12b21 = 0 where

bpp = κpΩ
2
p − αpp, bpq = γpκp∆q/γq − αpq.

The formal solution of the biquadratic, which is still an
integral equation for λ, is

2λ2 = −κ1Ω
2
1 − κ2Ω

2
2 + α11 + α22

±
√
δ2 + 4a12a21

√
1 +

L1(α) + L2(α)
δ2 + 4a12a21

, (39)

where L1(α) = 2δ(α22 − α11) − 4(a12α21 + a12α21) and
L2(α) = 4α12α21 are, respectively, linear and quadratic
in αpq. The dominant orders of magnitude of the various
contributions to equation (39) are: λ ∼ κ1/2, a ∼ κ, α ∼
κ1/2, δ ∼ κ,L1 ∼ κ3/2, and L2 ∼ κ. With this, we can
derive the explicit result

λp = ±i
√
κpΘp −Dp +O(κ−1/2

p ),

where the damping rates are

Dp =
d11 + d22

4κpΘ2
p

+ (−1)p
δ(d22 − d11)− 2(d12a21 + d21a12)

4κpΘ2
p

√
δ2 + 4a12a21

· (40)

It is difficult to obtain general properties of these damping
rates. However, if w(z) > 0, there is an obvious conclu-
sion for the two-mode regime since

(
δ2 + 4a12a21

)1/2 ± δ
is always positive because a12a21 > 0. From apq > 0 and
dpq > 0, it then follows that D1 > 0 and the only possi-
bility of an instability is Re(λ2) = 0.

In the limit of flat gain/loss distributions (γp = γq,
κp = κq) and constant longitudinal pump profile (wp =
w), it is easy to verify that apq = κ∆ = κ

(
γw− 1−Ω2

)
,

dpq = κγwI, and dpp = dqq = (3/2)dpq. Using (35) this
leads to

D1 =
5
2

γw

γw − 1
I, D2 =

1
2

γw

2Ω2 − γw − 1

from which it follows that

D1/D2 = 1 +
23

52
(γw− 1)− 172

54
(γw − 1)2 + · · ·

= 1 +
23

52
y +

28
54
y2 + · · ·

In this limit, no instability is possible in the rate equation
limit.

4 Pump averages

Practically all results derived in this paper depend on
the pump averages (10). In this section we evaluate
these averages in three classic situations. For an end-
pumped linear Fabry-Perot fp = 2 sin2(kpz) with an
exponential decrease of the normalized pump w(z) =
wαL exp(−αz)/ [1− exp (−αL)] where w is the space av-
erage of the pump profile across the cavity, wp is

wp =
1
L

∫ L

0

wfpdz =
w

1 + (α/2kp)2
·

Thus, since α/2kp � 1 in normal operating conditions,
wp ' w and a single mode laser with end-pumping will
have the same properties as a laser with constant pumping
w. The same conclusion was obtained by different means
in [24]. Another contact with a classic problem is the role
of the filling factor with constant pumping w(z) = w in
the region ` but w = J = 0 in the remainder of the cavity,
i.e., `e on one side of the amplifying medium and L−`−`e
on the other side. Then

wp = w0
`

L
+

w0

2Lkp
[sin (2kp`e)− sin (2kp (`e + `))] .

Let us consider a more general configuration: a linear
Fabry-Perot of total length L filled with an amplifying
medium of length ` < L. The resonator is empty over
a length `e on one side of the amplifying medium and a
length L− `− `e ≥ 0 on the other side. In the empty sec-
tions, the absence of material medium implies w = J = 0.
In the amplifying medium, the pump decreases according
to an exponential law w(z) = w0 exp(−αz). Then

wp =
w0

αL
e−α`e

(
1− e−α`

)
+
w0

αL

e−α(`e+`)

1 + (2kp/α)2

×
{

cos [2kp (`e + `)]− 2kp
α

sin [2kp (`e + `)]
}

− w0

αL

e−α`e

1 + (2kp/α)2

[
cos (2kp`e)− 2kp

α
sin (2kp`e)

]
.

It is easy to generalize this expression of wp to a cav-
ity including different amplifying elements with different
lengths and different linear absorption coefficients sepa-
rated by empty sections of arbitrary length and linear
absorption.

5 Conclusion

One of the main interest of the results derived in this pa-
per is the rare opportunity to test the implications of a
modal truncation. It is surprising to note how few laser
properties can be derived without specifying the cavity
modes and/or the pump profile. Without any assumption
on w(z), fp, and γp, an asymptotic expression for the sin-
gle mode relaxation oscillation frequency and its damping
has been obtained in Section 3.1. In the two-mode regime,
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we have derived expressions (30, 31) for the oscillation fre-
quencies, expressions (40) for their damping rates, and the
universal properties (36, 37) of the power spectra. These
results rely only on the asymptotic property κp � 1. It
also follows from this analysis that the number of charac-
teristic roots for a laser oscillating onN modes is 2N . This
is at variance with the TSD result which predicts 2N + 1
roots in the same conditions. Thus the extra root is with-
out physical meaning, being an artefact of the truncation
procedure.

Assuming a linear Fabry-Perot, i.e., fn,p =
2 sin2 (nkpz) , the single mode intensity in steady state
can be expressed as an expansion in powers of(
wp − γ−1

p

)
/ (w2,p − 4wp)

2 or as the solution of an im-
plicit equation containing a sum over the pump averages
wn,p with coefficients that are simple irrational functions
of the intensity. Nothing comparable has been achieved
for the two-mode steady state modal intensities. However,
assuming a linear Fabry-Perot and a constant longitudi-
nal pump profile (wn,p = w) drastically reduces the dif-
ficulty of the problem and leads to explicit answers for
most problems in steady state. In particular, series have
been generated for the steady state two-modes intensi-
ties in powers of either w or yp = 1 − 1/γpw. Assuming
further κp = κq leads to explicit expressions for the relax-
ation oscillation frequencies and their damping rates in
the two-mode regime.

In steady state, the global and modal rate equations
yield very similar expressions for the modal intensities pro-
vided the pump profile is constant and the cavity is a
Fabry-Perot completely filled by the amplifying medium.
Any departure from these limitations does not affect the
TSD result while it may deeply change the expressions
derived from the global rate equations.

It is a pleasure to acknowledge fruitful discussions with G.
Kozyreff, M. Tlidi, J.Wm. Turner, and E.A. Viktorov. Par-
ticular thanks are due to D. Pieroux and I. Koryukin. This
research was supported by the Fonds National de la Recherche
Scientifique and the Interuniversity Attraction Pole program
of the Belgian government.

Appendix A: Convergence of the single mode
expansions

In general, it is not possible to derive exact explicit solu-
tions of the laser equations and therefore series expansions
are needed to proceed further in the analysis. Consider for
instance the exact solution (6) obtained in the case of a
linear Fabry-Perot with constant pump. It is natural to
expand it in powers of w. This leads to a major difficulty
since such an expansion has a finite and in fact rather
small radius of convergence. To appreciate this difficulty,
we consider the function F (z) = 4z − 1 − (8z + 1)1/2 in
the complex z-plane. It has a branch point on the real
axis at z = −1/8 and therefore the function is defined in
the complex plane except for a cut on the real axis from
−1/8 to −∞. Hence, the expansion of F (z) in powers of

z around zc on the real axis has a radius of convergence
R = zc + 1/8. In other terms, the expansion of Ip in pow-
ers of w around the laser threshold wc = 1 converges up
to wmax = 17/8. However, the more general analysis for
an arbitrary pump profile suggests an alternative expan-
sion. Indeed, the series expansion (11) leads in the limit
of constant pump profile to the result

Ip =
2
3
y +

20
33
y2 +

190
35

y3 + O
(
y4
)
,

with y = 1 − 1/w. The transformation w → y is a con-
formal transformation which maps the real non negative
axis [0,+∞] of the w-plane into the fundamental inter-
val [0, 1] on the real axis of the y-plane. Let us replace w
by 1/(1 − y) in the exact solution (6) and consider the
function G(z) = 4/(1− z)− 1− [1 + 8/ (1− z)]1/2 in the
complex z-plane. This function has a pole and branching
point at z = 1 and a branching point at z = 9. Hence the
function G(z) is defined in the complex plane cut along
the real axis between +1 and +9 and an expansion of G(z)
around the origin has a radius of convergence R = 1. In
physical terms, the expansion in powers of y of the steady
state intensity converges for the whole domain of physical
relevance.

It is instructive to compare these results with the
power expansions of the TSD single mode intensity

ITSD(w) = −2 + w/2 +
√

2 + (w/2)2. (A.1)

In the complex w-plane, the function ITSD(w) has a pair
of branching points on the imaginary axis at w = ±2i

√
2.

Hence, the expansion of ITSD(w) in powers of w − wc

has a radius of convergence R =
√

8 + w2
c , and the series

converges up to wmax = wc+R on the real axis. Hence, the
expansion around wc = 1 has a radius of convergence R =
3 and wmax = 4. Applying the conformal mapping y =
1−1/w, the TSD single mode intensity is characterized by
a pole and a branching point at y = 1 and two branching
points at y± = 1 ± i/

√
8. Therefore the series expansion

around y = 0 has, again, a radius of convergence R = 1.

Appendix B: TSD solutions for two modes

In the TSD approximation, which implies wp = w, and
setting without loss of generality γp = γ1 = 1, γq = γ2 ≡
γ, the explicit solution of the TSD intensity equations in
the two-mode regime is [1]

I1 =
2
3
−4 + (2− 3w)γ +

√
(9w2 − 8)γ2 + 32γ − 8

3wγ −
√

(9w2 − 8)γ2 + 32γ − 8
(B.1)

which is positive for

w ≥ w1 =
(
−2 + 4γ − γ2

)
/ [γ (2− γ)] ,

and

I2 =
2

3γ
2− (4 + 3w)γ +

√
(9w2 − 8)γ2 + 32γ − 8

3wγ −
√

(9w2 − 8)γ2 + 32γ − 8
(B.2)
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which is positive for

w ≥ w2 =
(
−1 + 4γ − 2γ2

)
/ [γ(−1 + 2γ)] .

These expressions make sense only if the modal intensities
are real and non negative. This constraints the gain ratio
to the range 1/2 < γ ≤ 1. For w < w2, I2 is either negative
or complex. Thus w2 is identified as the TSD threshold of
oscillation of the two-mode regime.

The convergence of series expansions of these modal
intensities can be assessed easily. In the complex w-
plane, both functions have a pair of purely imaginary
branch points at w± = ±i

√
8 (4γ − γ2 − 1) /9. There-

fore, the radius of convergence for the expansions of
I1,TSD(w) and I2,TSD(w) in powers of w − wc is R =√
w2

c + 8 (4γ − γ2 − 1) /9 and the upper bound for con-
vergence is wmax = wc + R. For γ = 1, wc = w2 = 1 and
one finds R = 5/3 which yields wmax = 8/3. This wmax is
significantly smaller than the wmax = 4 of the single mode
TSD intensity.

Performing the conformal mapping y = 1 − α/w
where α is real and positive, leads to an expression for
I1,TSD(y) and I2,TSD(y) which has a pole and a branch-
ing point at y = 1 and two branching points at y± =
1±3iαγ/

√
8 (4γ − γ2 − 1). Thus, the series expansions of

these two intensities in powers of y have a radius of con-
vergence R = 1 which again covers the whole domain of
physical relevance.

For the two-mode TSD modal intensities (B.1, B.2),
an expansion in powers of w − w2 yields

I1,TSD = 2
1− γ
2γ − 1

+
2γ(2− γ)

−1 + 4γ + 2γ2
(w − w2)

+O
[
(w − w2)2

]
,

I2,TSD =
2(w − w2)
−1 + 4γ + 2γ2

+O
[
(w − w2)2

]
.

The function I1,TSD(w = w2) = 2(1 − γ)/(2γ − 1) is of
course the single mode intensity (A.1) for γpw = w2. If
γ = 1, then

I1,TSD = I2,TSD =
2
5

(w − 1) +
6
53

(w − 1)2

− 54
55

(w − 1)3 +O
[
(w − 1)4

]
.

Alternatively, we may expand the two modal intensities
in powers of y2 = 1− w2/w

I1,TSD = 2
1− γ
2γ − 1

+ 2y2
−2 + 9γ − 8γ2 + 2γ3

(2γ − 1) (−1 + 4γ + 2γ2)
+O(y2

2),

I2,TSD = 2y2
−1 + 4γ − 2γ2

γ (−1 + 4γ + 2γ2)
+O(y2

2).

For γ = 1, this yields

I1,TSD = I2,TSD =
2
5
y +

56
53
y2 +

1496
55

y3 +O(y4).

For the convergence of these series, it is relevant to notice
that the w-expansions are alternate series since 0.5 ≤ γ ≤
1, while the y-expansions are positive series.

Appendix C: Evaluation of Ω2
p

The evaluation of Ω2
p is central to the study of the lin-

earized equations in the two-mode regime. By definition,
we have for a Fabry-Perot resonator:

Ω2
p = γpIp

1
L

∫ L

0

wf2
p

1 + fpIp + fqIq
dz

= γpIp
∞∑
n=0

1
L

∫ L

0

wf2
p

(
−fpIp − fqIq

)n
dz

= γpIp
∞∑
n=0

(−)n
n∑
k=0

(
n

k

)
IkpI

n−k
q

1
L

∫ L

0

wfk+2
p fn−kq dz.

Using the relation (15), the first terms in the expansion of
Ω2
p are

Ω2
p = γpIp

(
wpp − Ipwppp − Iqwppq

+I2

pwpppp + I2

qwppqq + 2IpIqwpppq + ...
)

= γpIp
(

2wp −
1
2
w2,p

)
− γpI

2

p

(
15
4
wp −

3
2
w2,p +

1
4
w3,p

)
− γpIpIq

(
2wp +

3
2
wq −

1
2
w2,p − wp,+,q

−wp,−,q +
1
4
w2p,+,q +

1
4
w2p,−,q

)
+ ...

If wp = w, we have

Ω2
p

wγp
=

3
2
Ip −

5
2
I2

p −
3
2
IpIq

+
35
8
I3

p +
9
4
IpI

2

q + 5I2

pIq + ...

Using the expression (16) for the modal intensities yields

Ω2
p

wγp
=

3
5

(3yp − 2yq)−
2
53

(
12y2

p − 51ypyq + 37y2
q

)
− 2

55

(
2196y3

p − 6862y2
pyq + 6238ypy2

q − 1579y3
q

)
+ ...

In the further limit γp = γq, we obtain

Ω2
p = wγpIp

(
3
2
− 4Ip +

93
8
I2

p + ...

)
with Ip given by equation (17) up to third order in yp.
Therefore a systematic expansion in powers of either yp
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or wγp − 1 is

Ω2
p =

3
5
yp +

79
53
y2
p +

1989
55

y3
p + ...

=
3
5

(γpw − 1) +
4
53

(γpw − 1)2 − 86
55

(γpw − 1)3 + ...
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